Enjoy A New Life In FTGAMES!

关于我们

从哈密顿量  出发,用平均场近似可以计算出各向同性液相、向列相与近晶A相的各类相图。式中F0(d)V0(rij)为分子质心的作用势能,F2(d)V2(rij)p2(cosθij)为伦敦色散力排列势能,rij和θij是i分子和j分子之间的距离和夹角。V0=0,F2V2=-J的情形,称为迈尔-绍佩(Maier-Saupe)理论,J是与分子体积等有关的常数。 这时平均场的式中是向列相的序参量, 从这种分子统计理论可以计算曲率弹性常数等材料参量和胆甾相相变等,并获得一定的成功。然而,目前还未能从理论上预言哪种化合物会有液晶相。 利用分子统计理论也可对重入现象(见液晶)、盘形分子液晶相图以及(物理性质依分子尾链碳原子数而交替变化的)奇偶效应等部分实验结果作出解释。


液晶分子较大,因此可以用经典力学和经典统计力学来描述它的性质。关于长形分子液晶的理论研究较为成熟,对盘形分子和溶致液晶的研究则刚开始。


描述液晶相变的最简单理论是朗道平均场理论。这里,描述向列相与各向同性液相之间的一级相变的吉布斯自由能(见吉布斯函数)为式中p为压力,T为温度。序参量S厵0时是向列相。用这个理论可以解释一系列的压力实验。有趣的是,描述向列相与近晶A相之间相变的自由能表示式与描述超导的具有相同的结构。 在许多情形还必须考虑涨落的影响。譬如向列相与近晶C相之间的相变是一级相变,但平均场近似却给出二级相变。在邻近近晶A要的向列相中,平行与垂直于r的两个相关长度的临界指数并不相同,也与一般理论假设有矛盾。 有一些相变(包括二维薄膜与胆甾相的蓝相)可以应用缺陷机理来解释,并牵涉到模耦合和重正化群的计算。